Abstract
Surface phonon polaritons (SPhPs) are hybrid light-matter states in which light strongly couples to lattice vibrations inside the Reststrahlen band of polar dielectrics at mid-infrared frequencies. Antennas supporting localized surface phonon polaritons (LSPhPs) easily outperform their plasmonic counterparts operating in the visible or near-infrared in terms of field enhancement and confinement thanks to the inherently slower phonon-phonon scattering processes governing SPhP decay. In particular, LSPhP antennas have attracted considerable interest for thermal management at the nanoscale, where the emission strongly diverts from the usual far-field blackbody radiation due to the presence of evanescent waves at the surface. However, far-field measurements cannot shed light on the behavior of antennas in the near-field region. To overcome this limitation, we employ scattering-scanning near-field optical microscopy (sSNOM) to unveil the spectral near-field response of 3C-SiC antenna arrays. We present a detailed description of the behavior of the antenna resonances by comparing far-field and near-field spectra and demonstrate the existence of a mode with no net dipole moment, absent in the far-field spectra, but of importance for applications that exploit the heightened electromagnetic near fields. Furthermore, we investigate the perturbation in the antenna response induced by the presence of the AFM tip, which can be further extended toward situations where for example strong IR emitters couple to LSPhP modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.