Abstract

Hyperbolic metamaterial (HMM) alternately stacked by graphene and silicon carbide (SiC) is proposed to theoretically study near-field radiative heat transfer. Heat transfer coefficients (HTCs) are calculated using the effective medium theory (EMT). We observe that HMMs can exhibit better heat transfer characteristic than graphene-covered SiC bulks when appropriate SiC thickness and chemical potentials of graphene are selected. Transfer matrix method (TMM) is also employed to calculate HTC between HMMs with thicker SiC, given the invalidity of EMT in this case. We deduce that with increasing SiC thickness, HTC first increases rapidly and then decreases slowly when it reaches maximum value. HTC is high for graphene with small chemical potential. Results may benefit applications of thermophotovoltaic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.