Abstract

One of the most important parameters related to the near-field readout principle is aperture-to-media spacing (effective spacing). We proposed a near-field optical head with a protruding aperture that can reduce the effective spacing beyond the mechanical limit of the flying height and localize the near-field on the medium. Using nanostep lithography, we fabricated the protruding aperture, whose extension is 20 nm with 5 nm accuracy, so that the effective spacing is successfully reduced to 50 nm on a 3.2×3.6 mm flying head. We demonstrated signal readout with a 150 nm-long line-and-space pattern in chromium with the head. The flying height was estimated to be 75 nm, so that the effective spacing was 54 nm. The circumferential speed was 2.7 m/s and the signal frequency was 9.1 MHz. We also propose a promising structure for an optical head of higher density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call