Abstract
The localization of multiple near-field sources in a spatially white Gaussian noise environment is studied. A modified two-dimensional (2-D) version of the multiple signal classification (MUSIC) algorithm is used to localize the signal sources; range and bearing. A global-optimum maximum likelihood searching approach to localize these sources is discussed. It is shown that in the single source situation, the covariances of both the 2-D MUSIC estimator and the maximum likelihood estimator (MLE) approach the Cramer-Rao lower bound as the number of snapshots increases to infinity. In the multiple source situation, it is observed that for a high signal-to-noise ratio (SNR) and a large number of snapshots, the root mean square errors (RMSEs) of both localization techniques are relatively small. However, for low SNR and/or small number of snapshots, the performance of the MLE is much superior that of the modified 2-D MUSIC. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.