Abstract
Aiming at improving the accuracy and efficiency of scattering information from multiple targets in near-field regions, this paper proposes a near-field iterative physical optics (IPO) method based on a modified near-field Green’s function for the composite electromagnetic scattering analysis of multiple hybrid dielectric and conductor targets. According to the electric field and magnetic field integral equation, the electric and magnetic current were updated utilizing the Jacobi iteration method. Then, by introducing an expansion center lying in the neighborhood of the source point, Green’s function was modified for near-field scattering between multiple hybrid dielectric and conductor targets. To accelerate the implementation of the procedure, the multilevel fast multipole method, the fast far-field approximation, and parallel multicore programming were introduced. Numerical results indicate that there is good agreement between the results calculated by the near-field IPO method and MLFMM solver in commercial software FEKO while significantly reducing the computational burden. To fully exploit the scattering information, the high resolution range profiles (HRRP) of different targets under different conditions were analyzed, which can be further applied for automatic target detection and recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.