Abstract

Employing rigorous electromagnetic theory we investigate optical the near-field imaging of two interacting dipole-like objects with metal and slightly lossy metamaterial nanoslab superlenses. Our analysis indicates that the dipole emission is suppressed by near-field interactions when the objects are close to the lens or each other. This strongly influences the image quality, in particular with objects of small size and high polarizability. The interference from two nearby objects also affects the resolution and subwavelength definition can only be obtained for objects with dipole moments predominantly orthogonal to the slab. Such an optimal imaging condition is achieved with excitation by total internal reflection. With simulations we show that in these circumstances, subwavelength resolutions of about λ/5 for silver superlens and λ/10 for metamaterial slab are reached.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.