Abstract

We present a unique method for real-time polarization measurement by use of a discrete space-variant subwavelength grating. The formation of the grating is done by discrete orientation of the local subwavelength grooves. The complete polarization analysis of the incident beam is determined by spatial Fourier transform of the near-field intensity distribution transmitted through the discrete subwavelength dielectric grating followed by a subwavelength metal polarizer. We discuss a theoretical analysis based on Stokes-Mueller formalism, as well as on Jones calculus, and experimentally demonstrate our approach with polarization measurements of infrared radiation at a wavelength of 10.6 microm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.