Abstract

Produced formation waters (PFWs), a by-product of both oil and gas extraction, are separated from hydrocarbons onboard oil platforms and then discharged into the sea through submarine outfalls. The dispersion of PFWs into the environment may have a potential impact on marine ecosystems. We reproduce the initial PFW-seawater mixing process by means of the UM3 model applied to offshore natural gas platforms currently active in the Northern Adriatic Sea (Mediterranean Sea). Chemical analyses lead to the identification of a chemical tracer (diethylene glycol) which enables us to follow the fate of PFWs into receiving waters. The numerical simulations are realized in different seasonal conditions using both measured oceanographic data and tracer concentrations. The numerical results show the spatial and temporal plume development in different stratification and ambient current conditions. The analytical approach measures concentrations of the diethylene glycol at a maximum sampling distance of 25 m. The results show a good agreement between field observations and model predictions in the near-field area. The integration of numerical results with chemical analyses also provides new insight to plan and optimize PFW monitoring and discharge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.