Abstract
Near‐fault effects have been widely recognised to produce specific features of earthquake ground motion, that cannot be reliably predicted by 1D seismic wave propagation modelling, used as a standard in engineering applications. These features may have a relevant impact on the structural response, especially in the nonlinear range, that is hard to predict and to be put in a design format, due to the scarcity of significant earthquake records and of reliable numerical simulations. In this contribution a pilot study is presented for the evaluation of seismic ground‐motions in the near‐fault region, based on a high‐performance numerical code for 3D seismic wave propagation analyses, including the seismic fault, the wave propagation path and the near‐surface geological or topographical irregularity. For this purpose, the software package GeoELSE is adopted, based on the spectral element method. The set‐up of the numerical benchmark of 3D ground motion simulation in the valley of Grenoble (French Alps) is chosen to study the effect of the complex interaction between basin geometry and radiation mechanism on the variability of earthquake ground motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.