Abstract

Charge imbalance is a very common issue in multi-cell /module/pack battery systems due to manufacturing variations, inconsistent charging/discharging, and uneven thermal distribution. As a consequence, the deliverable charge capacity, battery lifespan, and system reliability may all decrease over time. To tackle this issue, various external circuit designs can be attached for charge balance, and the internal battery cell/module/pack connection can also significantly affect the charge balance performance. This paper focuses on minimizing the battery charge equalization (BCE) time by battery cell/module reconfiguration. Specifically, for the reconfigurable module-based BCE system, we propose reconfiguration algorithms for fast charge equalization under different levels of system reconfigurability. For battery systems allowing module reconfiguration and intra-module cell reconfiguration, the proposed module-based bounded reconfiguration algorithm can reach or get very close to the minimum BCE times obtained by exhaustive search. When the reconfigurability level is extended by allowing inter-module cell reconfiguration, the proposed module-based complete reconfiguration algorithm can achieve similar optimality to that of the genetic algorithm (GA). Moreover, as compared to the circuit experiments, exhaustive search, and GA, the proposed algorithms take much less computational time. The optimality and computational efficiency of the proposed algorithms are demonstrated by both circuit and numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.