Abstract

The nearest neighbor graph (NNG), defined for a set of points in Euclidean space, has found many uses in computational geometry and clustering analysis. Yet there seems to be surprisingly little knowledge about some basic properties of this graph. In this talk, we ask some natural questions that are motivated by geometric embedding problems. For example, in the simulation of many-body systems, it is desirable to map a set of particles to a regular data array so as to preserve neighborhood relations, i.e., to minimize the dilation of NNG. We will derive bounds on the dilation by studying the diameter of NNG. Other properties and applications of NNG will also be discussed. (Joint work with Mike Paterson)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.