Abstract
Since 1992, all state-of-the-art methods for fast and sensitive identification of evolutionary, structural, and functional relations between proteins (also referred to as "homology detection") use sequences and sequence-profiles (PSSMs). Protein Language Models (pLMs) generalize sequences, possibly capturing the same constraints as PSSMs, e.g., through embeddings. Here, we explored how to use such embeddings for nearest neighbor searches to identify relations between protein pairs with diverged sequences (remote homology detection for levels of <20% pairwise sequence identity, PIDE). While this approach excelled for proteins with single domains, we demonstrated the current challenges applying this to multi-domain proteins and presented some ideas how to overcome existing limitations, in principle. We observed that sufficiently challenging data set separations were crucial to provide deeply relevant insights into the behavior of nearest neighbor search when applied to the protein embedding space, and made all our methods readily available for others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.