Abstract

A method for estimating the configurational (i.e., non-kinetic) part of the entropy of internal motion in complex molecules is introduced that does not assume any particular parametric form for the underlying probability density function. It is based on the nearest-neighbor (NN) distances of the points of a sample of internal molecular coordinates obtained by a computer simulation of a given molecule. As the method does not make any assumptions about the underlying potential energy function, it accounts fully for any anharmonicity of internal molecular motion. It provides an asymptotically unbiased and consistent estimate of the configurational part of the entropy of the internal degrees of freedom of the molecule. The NN method is illustrated by estimating the configurational entropy of internal rotation of capsaicin and two stereoisomers of tartaric acid, and by providing a much closer upper bound on the configurational entropy of internal rotation of a pentapeptide molecule than that obtained by the standard quasi-harmonic method. As a measure of dependence between any two internal molecular coordinates, a general coefficient of association based on the information-theoretic quantity of mutual information is proposed. Using NN estimates of this measure, statistical clustering procedures can be employed to group the coordinates into clusters of manageable dimensions and characterized by minimal dependence between coordinates belonging to different clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.