Abstract
Abstract—The datasets used in many real applications are highly imbalanced which makes classification problem hard. Classifying the minor class instances is difficult due to bias of the classifier output to the major classes. Nearest neighbor is one of the most popular and simplest classifiers with good performance on many datasets. However, correctly classifying the minor class is commonly sacrificed to achieve a better performance on others. This paper is aimed to improve the performance of nearest neighbor in imbalanced domains, without disrupting the real data distribution. Prototype-weighting is proposed, here, to locally adapting the distances to increase the chance of prototypes from minor class to be the nearest neighbor of a query instance. The objective function is, here, G-mean and optimization process is performed using gradient ascent method. Comparing the experimental results, our proposed method significantly outperformed similar works on 24 standard data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer and Communication Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.