Abstract
Steady two-dimensional turbulent free-surface flow in a channel with a slightly uneven bottom is considered. The shape of the unevenness of the bottom can be in the form of a bump or a ramp of very small height. The slope of the channel bottom is assumed to be small, and the bottom roughness is assumed to be constant. Asymptotic expansions for very large Reynolds numbers and Froude numbers close to the critical value {Fr} = 1, respectively, are performed. The relative order of magnitude of two small parameters, i.e. the bottom slope and ({Fr}-1), is defined such that no turbulence modelling is required. The result is a steady-state version of an extended Korteweg–de Vries equation for the surface elevation. Other flow quantities, such as pressure, flow velocity components, and bottom shear stress, are expressed in terms of the surface elevation. An exact solution describing stationary solitary waves of the classical shape is obtained for a bottom of a particular shape. For more general shapes of ramps and bumps, stationary solitary waves of the classical shape are also obtained as a first approximation in the limit of small, but nonzero, dissipation. With the exception of an eigensolution for a ramp, an outer region has to be introduced. The outer solution describes a ’tail’ that is attached to the stationary solitary wave. In addition to the solutions of the solitary-wave type, solutions of smaller amplitudes are obtained both numerically and analytically. Experiments in a water channel confirm the existence of both types of stationary single waves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.