Abstract
The interaction between flow inertia and elasticity in high-Reynolds-number, axisymmetric and near-critical swirling flows of an incompressible and viscoelastic fluid in an open finite-length straight circular pipe is studied at the limit of low elasticity. The stresses of the viscoelastic fluid are described by the generalized Giesekus constitutive model. This model helps to focus the analysis on low fluid elastic effects with shear thinning of the viscosity. The application of the Giesekus model to columnar streamwise vortices is first investigated. Then, a nonlinear small-disturbance analysis is developed from the governing equations of motion. It reveals the complicated interactions between flow inertia, swirl and fluid rheology. An effective Reynolds number that links between steady states of swirling flows of a viscoelastic fluid and those of a Newtonian fluid is revealed. The effects of the fluid viscosity, relaxation time, retardation time and mobility parameter on the flow development in the pipe and on the critical swirl for the appearance of vortex breakdown are explored. It is found that in vortex flows with either an axial jet or an axial wake profile, increasing the shear thinning by decreasing the ratio of the viscoelastic characteristic times from one (with fixed values of the Weissenberg number and the mobility parameter) increases the critical swirl ratio for breakdown. Increasing the fluid elasticity by increasing the Weissenberg number from zero (with a fixed ratio of the viscoelastic characteristic times and a fixed value of the mobility parameter) or increasing the fluid mobility parameter from zero (with fixed values of the Weissenberg number and the ratio of viscoelastic times) causes a similar effect. The results may explain the trend of changes in the appearance of breakdown zones as a function of swirl level that were observed in the experiments by Stokes et al. (J. Fluid Mech., vol. 429, 2001, pp. 67–115), where Boger fluids were used. This work extends for the first time the theory of vortex breakdown to include effects of non-Newtonian fluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.