Abstract

There is a lack of satellite-based aerosol retrievals in the vicinity of low-topped clouds, mainly because reflectance from aerosols is overwhelmed by three-dimensional cloud radiative effects. To account for cloud radiative effects on reflectance observations, we develop a Convolutional Neural Network and retrieve aerosol optical depth (AOD) with 100-500m horizontal resolution for all cloud-free regions regardless of their distances to clouds. The retrieval uncertainty is 0.01+5%AOD, and the mean bias is approximately -2%. In an application to satellite observations, aerosol hygroscopic growth due to humidification near clouds enhances AOD by 100% in regions within 1km of cloud edges. The humidification effect leads to an overall 55% increase in the clear-sky aerosol direct radiative effect. Although this increase is based on a case study, it highlights the importance of aerosol retrievals in near-cloud regions, and the need to incorporate the humidification effect in radiative forcing estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.