Abstract

This study presents an approach to achieve a near-zero temperature coefficient of resonance frequency (τf) in rare-earth titanate microwave dielectric ceramics (MWDCs) by inducing a phase transition. By Zr4+ substitution at the B site, a series of Sm2Ti1-xZrxO5 (0.02 ≤ x ≤ 0.55) ceramics are synthesized using the solid-state method to intentionally alter the radius ratio of the A/B sites, realizing in a controlled phase transition from orthorhombic (Pnma) to biphasic coexistence and ultimately to cubic (Fd3̅m) structure. The phase composition is rigorously identified through X-ray diffraction (XRD) Rietveld refinement, high-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction (SAED), and Raman spectroscopy. A comprehensive analysis is conducted to elucidate the relationships between factors such as ionic polarizability, packing fraction, bond valence, complex chemical bonding, and far-infrared reflectivity spectra with microwave dielectric properties. The results demonstrate that these ceramics exhibit a broad range of permittivity (14.30-23.18), high-quality factors (14,828-22,300 GHz), opposite temperature coefficient of resonance frequency (-16.0 to + 22.4 ppm/°C), and nice thermal conductivity (1.81-2.76 W·m-1·K-1), particularly at x = 0.30 with a near-zero τf value of +1.6 ppm/°C. The findings not only provide insights into designing MWDCs with a near-zero τf but also offer a promising route for developing advanced microwave materials with improved performance and reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.