Abstract

We show that highly nonlinear chalcogenide glass nanowire waveguides with near-zero anomalous dispersion should be capable of generating correlated photon-pairs by spontaneous four-wave mixing at frequencies detuned by over 17 THz from the pump where Raman noise is absent. In this region we predict a photon pair correlation of >100, a figure of merit >10 and brightness of ~8×10(8) pairs/s over a bandwidth of >15 THz in nanowires with group velocity dispersion of <5 ps∙km(-1) nm(-1). We present designs for double-clad Ge(11.5)As(24)Se(64.5) glass nanowires with realistic tolerance to fabrication errors that achieve near-zero anomalous dispersion at a 1420 nm pump wavelength. This structure has a fabrication tolerance of 80-170 nm in the waveguide width and utilizes a SiO(2)/Al(2)O(3) layer deposited by atomic layer deposition to compensate the fabrication errors in the film thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call