Abstract

The effects of modified transport characteristics within an extremely thin layer adjacent to the fluid–solid interfaces are investigated for fully developed laminar micro-scale Couette flows with slip boundary conditions. The wall-adjacent layer effects are incorporated into the continuum-based mathematical model by imposing variable viscosity and thermal conductivity values close to the channel walls, for solving the momentum and energy conservation equations. Analytical expressions for the velocity profiles are derived and are subsequently utilized to obtain the temperature variations within the parallel plate channel, as a function of the significant system parameters. It is revealed that the variations in effective viscosity and thermal conductivity values within the wall-adjacent layer have profound influences on the fluid flow and the heat transfer characteristics within the channel, with an interesting interplay with the wall slip boundary conditions. These effects cannot otherwise be accurately captured by employing classical continuum based models for microscale Couette flows that do not take into account the alterations in effective transport properties within the wall adjacent layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.