Abstract

An experimental investigation of the steady, laminar near-wake flowfield of a two-dimensional, adiabatic, circular cylinder ·with surface mass transfer has been made at a freestream Mach number of 6.0. The pressure and mass- concentration fields associated with the transfer of argon, nitrogen, or helium into the near wake were studied for mass transfer from the forward stagnation region, and from the base. For sufficiently low mass transfer rates from the base, for which a recirculating zone exists, the entire near-wake flowfield correlates with the momentum flux, not the mass flux, of the injectant, and the mass-concentration field is determined by counter-current diffusion into the reversed flow. For mass addition from the forward stagnation region, the pressure field is undisturbed and the mass- concentration field is nearly uniform in the region of reversed flow. The axial decay of argon mass concentration in the intermediate wake, downstream of the neck, is explained with the aid of an integral solution in the incompressible plane, from which the location of the virtual origin for the asymptotic far-wake solution has been derived as one result.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call