Abstract

Ice clouds affect the energy balance of the atmosphere through absorption, reflection, and scattering of solar radiation. We have developed a new experimental technique to simultaneously measure thin ice film extinction and its thickness (about 0.06-0.21 μm) by combining Brewster angle cavity ring-down spectroscopy and quartz crystal microbalance. The ice film serves as a proxy for ice clouds. Thin ice films were formed by water vapor deposition on a silica surface at 258 K. The average extinction cross sections of ice films were determined to be about 6.6 × 10-23, 8.1 × 10-23, 5.3 × 10-23, 5.6 × 10-23, 5.2 × 10-23, 5.1 × 10-23, and 3.9 × 10-23 cm2/molecule at wavelengths of 290, 300, 310, 320, 330, 340, and 350 nm at 258 K, respectively. Atmospheric implications of the results are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.