Abstract
Light exposure during manufacturing, storage, and administration can lead to the photodegradation of therapeutic proteins. This photodegradation can be promoted by pharmaceutical buffers or impurities. Our laboratory has previously demonstrated that citrate-Fe(III) complexes generate the •CO2- radical anion when photoirradiated under near UV (λ = 320-400 nm) and visible light (λ = 400-800 nm) [Subelzu, N.; Schöneich, C. Mol. Pharmaceutics 2020, 17 (11), 4163-4179; Zhang, Y. Mol. Pharmaceutics 2022, 19 (11), 4026-4042]. Here, we evaluated the impact of citrate-Fe(III) on the photostability and degradation mechanisms of disulfide-containing proteins (bovine serum albumin (BSA) and NISTmAb) under pharmaceutically relevant conditions. We monitored and localized competitive disulfide reduction and protein oxidation by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis depending on the reaction conditions. These competitive pathways were affected by multiple factors, including light dose, Fe(III) concentration, protein concentration, the presence of oxygen, and light intensity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.