Abstract
Subwavelength planar structured interfaces, also known as metasurfaces, are ultra-thin optical elements modulating the amplitude, phase, and polarization of incident light using nanostructures called meta-atoms. The optical properties of such metasurfaces can be controlled across wavelengths by selecting geometries and materials of the meta-atoms. Given recent technological developments in optical device miniaturization, components for beam splitting and beam combining are sought for use within these devices as two quintessential components of every optical setup. However, realizing such devices using metasurfaces typically leads to poor uniformity of diffraction orders and narrow-band operation. Using a modified version of particle swarm optimization, we propose and numerically demonstrate a broadband, reciprocal metasurface beam combiner/splitter with uniformity > 97% and diffraction efficiency > 90% in the continuous band from λ=1525 nm to λ=1575 nm. The proposed approach significantly extends the current state of the art of metasurfaces design in terms of uniformity, bandwidth, and efficiency, and opens the door for devices requiring high power or near-unit uniformity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.