Abstract

An intersystem crossing (ISC) rate constant of 1.0×1011 s-1 was previously registered with a spiro-bis-benzophenone scaffold. Triplet generation efficiency could be further enhanced by stabilizing the spiro-charge-transfer (CT) state and rationally designing spiro-compounds (SCTs) that consist of electron-rich diphenyl ether as the spiro-CT donor and electron-deficient dinaphthyl ketone as the spiro-CT acceptor. Through fine-tuning of the energy level between the CT and high energy triplet states, near-unity triplet generation quantum yield was achieved and the underlying ISC mechanism is revealed by using ultrafast spectroscopy and quantum chemical calculations. Potential triplet sensitizing application was demonstrated in SCTs. Our findings suggest that a spiro-bichromophoric molecular system with an enhanced spiro-charge transfer warrants efficient triplet generation and is a powerful strategy of heavy-atom-free triplet sensitizers with predictable ISC properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.