Abstract

Metal nanoclusters have emerged as promising near-infrared (NIR)-emissive materials, but their room-temperature photoluminescence quantum yield (PLQY), especially in solution, is often low (<10%). We studied the photophysics of Au22(tBuPhC≡C)18 (Au22) and its alloy counterpart Au16Cu6(tBuPhC≡C)18 (Au16Cu6) (where tBu is tert-butyl and Ph is phenyl) and found that copper (Cu) doping suppressed the nonradiative decay (~60-fold less) and promoted intersystem crossing rate (~300-fold higher). The Au16Cu6 nanocluster exhibited >99% PLQY in deaerated solution at room temperature with an emission maximum at 720 nanometers tailing to 950 nanometers and 61% PLQY in the oxygen-saturated solution. The approach to achieve near-unity PLQY could enable the development of highly emissive metal cluster materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.