Abstract

Low phase noise lasers based on the combination of III–V semiconductors and silicon photonics are well established in the near-infrared spectral regime. Recent advances in the development of low-loss silicon nitride-based photonic integrated resonators have allowed them to outperform bulk external diode and fiber lasers in both phase noise and frequency agility in the 1550 nm-telecommunication window. Here, we demonstrate for the first time a hybrid integrated laser composed of a gallium nitride-based laser diode and a silicon nitride photonic chip-based microresonator operating at record low wavelengths as low as 410 nm in the near-ultraviolet wavelength region suitable for addressing atomic transitions of atoms and ions used in atomic clocks, quantum computing, or for underwater LiDAR. By self-injection locking of the Fabry–Pérot diode laser to a high-Q (0.4 × 106) photonic integrated microresonator, we reduce the optical phase noise at 461 nm by a factor greater than 100×, limited by the device quality factor and back-reflection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call