Abstract
This paper presents a comprehensive review of near-threshold wide-voltage designs on memory, resilient logic designs, low voltage Radio Frequency (RF) circuits, and timing analysis. With the prosperous development of wearable applications, low power consumption has become one of the primary challenges for IC designs. To improve the power efficiency, the prefer scheme is to operate at an ultra low voltage of Near Threshold Voltage (NTV). For the performance variation and degradation, a self-adaptive margin assignment technique is proposed in the low voltage. The proposed technique tracks the circuit states in real time and dynamically allocates voltage margins, reducing the minimum supply voltage and achieving higher energy efficiency. The self-adaptive margin assignment technique can be used in Static Random Access Memory (SRAM), digital circuits, and analog/RF circuits. Based on the self-adaptive margin assignment technique, the minimum voltage in the 40 nm CMOS process is reduced to 0.6V or even lower, and the energy efficiency is increased by 3–4 times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.