Abstract

The near threshold 7Li(p,n)7Be neutrons generated by incident proton energy having Gaussian distribution with mean energies from 1.85 to 1.95MeV, were studied as a practical neutron source for BNCT wherein an RFQ accelerator and a thick Li-target are used. Gaussian energy distributions with the standard deviation of 0, 10, 20 and 40keV for mean proton energies from 1.85 to 1.95MeV were surveyed in 0.01MeV increments. A thick liquid Li-target whose dimensions were established in our previous experiments (i.e., 1mm-thick with 50mm width and 50mm length) was considered in this study. The suitable incident proton energy and physical dimensions of Pb layer which serves as a gamma absorber and a Polyethylene layer which is used as a BDE were surveyed by means of the concepts of TPD. Dose distribution were calculated by using MCNP5. A proton beam with mean energy of 1.92MeV and a Gaussian energy distribution with a standard deviation of 20keV at a current of 10mA was selected from the viewpoint of irradiation time and practically achievable proton current. The suitable thicknesses of Pb gamma absorber was estimated to be about 3cm. The estimated thickness of the polyethylene BDE was about 24mm for an ideal proton current of 13mA, and was 18mm for a practical proton current of 10mA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call