Abstract

AbstractIn a changing climate, ice‐rich permafrost features such as rock glaciers will experience drastic changes. Modeling the heat transport through the blocky surface layer with its large interstitial pore spaces poses some challenges as various modes of non‐conductive heat transport—advective forms in particular—can occur. Here, we show that the 1D physics‐based model SNOWPACK can be used with a suitably adapted parameterization of ventilation to represent heat transport with reasonable accuracy. To do so, only one site‐specific parameter, which is linked to the size of the pores in the blocky layer, is used. Inclusion of this ventilation parameterization is shown to be important for modeling the thermal regime at three experimental sites in the Swiss Alps. Furthermore, it could be shown that (i) snow depth dynamics exert a strong control on the thermal regime, (ii) the ice‐content stratigraphy needs to be known precisely and (iii) the augmented heat flux through the blocky layer caused by ventilation in both snow and blocks is important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.