Abstract
Surface moisture has recently been reported to be used in regional-scale landslide early warning. Nevertheless, near-surface multi-depth hydrothermal measurements as a hillslope scale are often less concerned and rarely linked to landslide kinematics. In this paper, we selected two neighboring landslides with different deformation mechanisms as case studies. Using in-situ multi-source sensors, we monitored real-time soil temperature and moisture at specific depths within approximately 1.5 m. The measurements span two complete monsoon seasons, representing concurrent dry and wet hydrological extremes. Statistical Pearson correlation analysis was employed to quantify the relationships between landslide activity and environmental variables such as soil temperature and moisture content. The results indicate that the near-surface soil temperatures and moisture contents contribute to a better understanding of the factors controlling landslide activity, in which variations synergistically reflect hydrothermal interaction and potential deformation mechanisms. These soil temperatures and moisture contents at certain depths (specifically at 20, 50, and even 100 cm) show moderate to strong correlations (with Pearson correlation coefficient values ranging from 0.4 to 0.8) with landslide deformation. In cases where discrete daily rainfall data exhibited unsatisfactory correlations due to their data attributes, soil temperature and moisture effectively served as alternative indicators for rainfall inputs, aiding in the analysis. Overall, this work emphasizes the critical influence of soil moisture and temperature on landslide dynamics. This study also highlights the need for comprehensive monitoring and forecasting strategies that consider a wide range of environmental factors to mitigate landslide risks associated with climate change, particularly in the context of intensified extreme weather events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.