Abstract
Several common‐midpoint seismic reflection profiles collected on the Matanuska Glacier, Alaska, clearly demonstrate the feasibility of collecting high‐quality, high‐resolution near‐surface reflection data on a temperate glacier. The results indicate that high‐resolution seismic reflection can be used to accurately determine the thickness and horizontal distribution of debris‐rich ice at the base of the glacier. The basal ice thickens about 30% over a 300‐m distance as the glacier flows out of an overdeepening. The reflection events ranged from 80‐ to 140‐m depth along the longitudinal axis of the glacier. The dominant reflection is from the contact between clean, englacial ice and the underlying debris‐rich basal ice, but a strong characteristic reflection is also observed from the base of the debris‐rich ice (bottom of the glacier). The P‐wave propagation velocity at the surface and throughout the englacial ice is 3600 m/s, and the frequency content of the reflections is in excess of 800 Hz. Supporting drilling data indicate that depth estimates are correct to within ± 1 m.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.