Abstract
Near-surface flow pathways can be important contributors to runoff in headwater catchments with low conductivity soils. However, the high spatio-temporal variability and connectivity between surface flow and shallow subsurface flow makes it difficult to study these processes. As a result, they are still poorly understood, especially for well vegetated humid catchments. The TopFlow project, therefore, aims to enhance our understanding of the generation and connectivity of overland flow and shallow subsurface flow in a pre-Alpine headwater catchment with low permeability Gleysols. We installed 14 small (1 by 3 m) runoff plots at different topographic locations to cover the range in slope, vegetation, and wetness conditions across the catchment. At each plot, we measured overland flow (including biomat flow) and shallow subsurface flow from the rooting zone during two snow-free seasons. In addition, we collected groundwater, precipitation and soil moisture data. We also installed two larger plots (8 by >10 m), where we collected data during natural rainfall events and sprinkling experiments. Specifically, we conducted experiments to determine the surface flow path lengths and celerity of overland flow and shallow subsurface flow. Overland flow and shallow subsurface flow occurred frequently on most plots (on average for 40% of the 26 rainfall events for which data were collected) but the spatial and temporal variability in overland flow and shallow subsurface flow generation was high. The timing and relative importance of overland flow and subsurface flow varied as well. Runoff ratios increased with increasing soil moisture storage and precipitation, and were generally higher for sites with a higher Topographic Wetness Index. Runoff ratios were sometimes larger than 1, indicating the importance of connectivity between subsurface and surface flow. Flow path lengths and celerity also differed for the plots and can be explained by differences in soil characteristics and wetness conditions. Overall, these results highlight the importance of fast near surface flow pathways for runoff generation and its high spatial and temporal variability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.