Abstract
Within the framework of a piecewise homogeneous body model, with the use of exact equations of the geometrically nonlinear theory of viscoelastic bodies, the distribution of near-surface self-balanced normal stresses in a body consisting of a viscoelastic half-plane, an elastic locally curved bond layer, and a viscoelastic covering layer is investigated. A method for solving the problem considered by employing the Laplace and Fourier transformations is developed. Numerical results for the self-balanced normal stresses caused by a local curving (imperfection) of an elastic bond layer upon tension and compression of the body mentioned along the free face plane are presented and analyzed. The viscoelasticity of the materials is described by the Rabotnov fractional-exponential operators. A macroscopic failure criterion is proposed, and the validity of this criterion is examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.