Abstract

Abstract The interior of Dronning Maud Land (DML) in East Antarctica is one of the most data-sparse regions of Antarctica for studying climate change. A monthly mean near-surface temperature dataset for the last 30 years has been compiled from the historical records from automatic weather stations (AWSs) at three sites in the region (Mizuho, Relay Station, and Dome Fuji). Multiple AWSs have been installed along the route to Dome Fuji since the 1990s, and observations have continued to the present day. The use of passive-ventilated radiation shields for the temperature sensors at the AWSs may have caused a warm bias in the temperature measurements, however, due to insufficient ventilation in the summer, when solar radiation is high and winds are low. In this study, these warm biases are quantified by comparison with temperature measurements with an aspirated shield and subsequently removed using a regression model. Systematic error resulting from changes in the sensor height due to accumulating snow was insignificant in our study area. Several other systematic errors occurring in the early days of the AWS systems were identified and corrected. After the corrections, multiple AWS records were integrated to create a time series for each station. The percentage of missing data over the three decades was 21% for Relay Station and 28% for Dome Fuji. The missing rate at Mizuho was 49%, more than double that at Relay Station. These new records allow for the study of temperature variability and change in DML, where climate change has so far been largely unexplored. Significance Statement Antarctic climate change has been studied using temperature data at staffed stations. The staffed stations, however, are mainly located on the Antarctic Peninsula and in the coastal regions. Climate change is largely unknown in the Antarctic plateau, particularly in the western sector of the East Antarctic Plateau in areas such as the interior of Dronning Maud Land (DML). To fill the data gap, this study presents a new dataset of monthly mean near-surface climate data using historical observations from three automatic weather stations (AWSs). This dataset allows us to study temperature variability and change over a data-sparse region where climate change has been largely unexplored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call