Abstract
The transesterification of triglycerides is a critical step in biodiesel production. In this work, by loading boron-doped copper oxides onto SBA-15 mesoporous molecular sieve, an acid-base bifunctional catalyst (i.e., CunO-Bs/SBA-15) was prepared and applied to triglyceride transesterification. Compared with pure copper, sodium or boron oxides-based catalysts, CunO-Bs/SBA-15 enabled a higher biodiesel yield (>97.5%) at near room temperature (i.e., 40 °C) in 120 min. The characterization results showed that after B doping, the CunO-Bs/SBA-15 catalyst contained highly-dispersed acid-base sites without blocking the channels of porous SBA-15 support, which had good catalytic performance. Finally, in-situ DRIFTS was used to reveal the catalytic mechanism of the acid-base bifunctional groups of the as-prepared CunO-Bs/SBA-15 during transesterification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.