Abstract

Results are presented from an exploratory study of near-room-temperature pulsed deposition of SiCxNy thin films using 1,3,5-tri(isopropyl)cyclotrisilazane (TICZ, C9H27N3Si3) and soft remote ammonia (NH3) plasma co-reactants. The process involved four pulses: thermal adsorption of TICZ to the substrate at very low temperature, nitrogen (N2) purge, soft NH3 remote plasma step, and N2 purge. These steps were repeated until the desired film thickness was reached. The ratio of C to N in the films was modulated by controlling the substrate temperature in the range of 30 to 200oC. In-situ analysis of the deposition process was carried-out using spectroscopic ellipsometry, and the films were analyzed by x-ray photoelectron spectroscopy (XPS). The findings of this study indicate that the combination of reduced substrate thermal budget and soft remote plasma provides an optimum low energy environment for the controlled deposition of SiCxNy protective coatings on thermally fragile, chemically sensitive substrates, including plastics and polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.