Abstract

A mobile platform was outfitted with real-time instruments to spatially characterize pollution concentrations in communities adjacent to the Ports of Los Angeles and Long Beach, communities heavily impacted by emissions related to dieselized goods movement, with the highest localized air pollution impacts due to heavy-duty diesel trucks (HDDT). Measurements were conducted in the winter and summer of 2007 on fixed routes driven both morning and afternoon. Diesel-related pollutant concentrations such as black carbon, nitric oxide, ultrafine particles, and particle-bound polycyclic aromatic hydrocarbons were frequently elevated two to five times within 150 m downwind of freeways (compared to more than 150 m) and up to two times within 150 m downwind of arterial roads with significant amounts of diesel traffic. While wind direction was the dominant factor associated with downwind impacts, steady and consistent wind direction was not required to produce; high impacts were observed when a given area was downwind of a major roadway for any significant fraction of time. This suggests elevated pollution impacts downwind of freeways and of busy arterials are continuously occurring on one side of the road or the other, depending on wind direction. The diesel truck traffic in the area studied was high, with more than 2000 trucks per peak hour on the freeway and two- to six-hundred trucks per hour on the arterial roads studied. These results suggest that similarly-frequent impacts occur throughout urban areas in rough proportion to diesel truck traffic fractions. Thus, persons living or working near and downwind of busy roadways can have several-fold higher exposures to diesel vehicle-related pollution than would be predicted by ambient measurements in non-impacted locations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.