Abstract

We formalise the concept of near resonance for the rotating Navier–Stokes equations, based on which we propose a novel way to approximate the original partial differential equation (PDE). The spatial domain is a three-dimensional flat torus of arbitrary aspect ratios. We prove that the family of proposed PDEs are globally well-posed for any rotation rate and initial datum of any size in any H s space with . Such approximations retain many more 3-mode interactions, and are thus more accurate, than the conventional exact-resonance approach. Our approach is free from any limiting argument that requires physical parameters to tend to zero or infinity, and is free from any use of small divisors (so that all estimates depend smoothly on the torus’s aspect ratios). The key estimate hinges on the counting of integer solutions of Diophantine inequalities rather than Diophantine equations. Using a range of novel ideas, we handle rigorously and optimally challenges arising from the non-trivial irrational functions in these inequalities. The main results and ingredients of the proofs can form part of the mathematical foundation of a non-asymptotic approach to nonlinear, oscillatory dynamics in real-world applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.