Abstract

A description is given of a set of algorithms for efficiently rendering an object defined by constructive solid geometry (CSG) directly onto a frame buffer without converting first to a boundary representation. This method requires only that the frame buffer contain sufficient memory to hold two color values, two depth values, and three one-bit flags. The algorithm first converts the CSG tree to a normalized form that is analogous to the sum-of-products form for Boolean switching functions. The following are developed: dynamic interleaving of Boolean tree normalization with bounding-box pruning, allowing efficient rendering for most CSG objects; a method for extending the technique to nonconvex primitives; and implementation of these ideas in an interactive CSG design system on the Pixel-planes 4 solid modeling system. In the design system the designer directly manipulates the CSG structure while continuously viewing the color rendering of the object being designed. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.