Abstract

Human immunodeficiency virus (HIV) infection is a chronic disease that can be treated with antiretroviral (ARV) therapy. However, the success of this treatment has been jeopardized by the emergence of HIV infections resistant to ARV drugs. In low-to middle-income countries (LMICs), where transmission of resistant viruses has increased over the past decade, there is an urgent need to improve access to HIV drug resistance testing. Here, we present a proof-of-concept study of a rapid and simple molecular method to detect two major mutations (K103 N, Y181C) conferring resistance to first-line nonnucleoside reverse transcriptase inhibitor regimens. Our near-point-of-care (near-POC) diagnostic test, combining a sequence-specific primer extension and a lateral flow DNA microarray strip, allows visual detection of HIV drug resistance mutations (DRM) in a short turnaround time (4 h 30). The assay has a limit of detection of 100 copies of plasmid DNA and has a higher sensitivity than standard Sanger sequencing. The analytical performance was assessed by use of 16 plasma samples from individuals living with HIV-1 and results demonstrated the specificity and the sensitivity of this approach for multiplex detection of the two DRMs in a single test. Furthermore, this near-POC assay could be easily taylored to detect either new DRMs or DRM of from various HIV clades and might be useful for pre-therapy screening in LMICs with high levels of transmitted drug resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call