Abstract

All-dielectric high-Q metasurface absorbers based on quasi-bound states in the continuum (QBICs) are essential for optical and photonic devices. However, achieving perfect absorption requires adding back reflectors at the bottom or placing at least four asymmetric elements in each unit of monolayer metasurfaces, which will increase the design complexity. This work proposes a honeycomb structure with units periodically arranged as a hexagonal lattice. Each unit cell is made of two nanopost elements. By only tuning the radius difference of two elements to break the in-plane symmetry, two orthogonal QBIC modes corresponding to toroidal dipole (TD) and electric dipole (ED) modes are excited, respectively. The maximum absorption reaches 92.3% at 955 nm with a Q factor of 1501, breaking the monolayer limit of 50% by the degenerate critical coupling. Our work may provide a promising route for designing high-Q all-dielectric metasurface absorbers applied in ultrafast optoelectronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call