Abstract

In Spatial Multiplexing MIMO systems, many powerful non-linear detection techniques as sphere decoding have emerged to overcome the performance limitations of linear detection techniques. However, these non-linear techniques suffer from high complexity that increases dramatically with the number of antennas and the modulation order. Hence, they cannot be implemented on highly parallel hardware architecture and are thus not suitable for real-time high data rate transmission. In this letter, a new detection technique is proposed to approach the optimal performance obtained by Maximum Likelihood (ML) detector without increasing the complexity significantly. This detector is denoted by OSIC-ML since it combines two techniques: the Ordered Successive Interference Cancellation (OSIC) and the ML. The proposed OSIC-ML detector shows a near-optimal performance at very low complexity even with large scale MIMO and imperfect channel estimation, where this complexity can be efficiently controlled to achieve the desired complexity-performance tradeoff.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.