Abstract
Scheduling packets with end-to-end deadline constraints in multihop networks is an important problem that has been notoriously difficult to tackle. Recently, there has been progress on this problem in the worst-case traffic setting, with the objective of maximizing the number of packets delivered within their deadlines. Specifically, the proposed algorithms were shown to achieve Ω(1/log(L)) fraction of the optimal objective value if the minimum link capacity in the network is Cmin =Ω(log (L)), where L is the maximum length of a packet's route in the network (which is bounded by the packet's maximum deadline). However, such guarantees can be quite pessimistic due to the strict worst-case traffic assumption and may not accurately reflect real-world settings. In this work, we aim to address this limitation by exploring whether it is possible to design algorithms that achieve a constant fraction of the optimal value while relaxing the worst-case traffic assumption. We provide a positive answer by demonstrating that in stochastic traffic settings, such as i.i.d. packet arrivals, near-optimal, (1-ε)-approximation algorithms can be designed if Cmin = Ω(log (L/ε)/ε2). To the best of our knowledge, this is the first result that shows this problem can be solved near-optimally under nontrivial assumptions on traffic and link capacity. We further present extended simulations using real network traces with non-stationary traffic, which demonstrate that our algorithms outperform worst-case-based algorithms in practical settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the ACM on Measurement and Analysis of Computing Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.