Abstract

We introduce a simple network design game that models how independent selfish agents can build or maintain a large network. In our game every agent has a specific connectivity requirement, i.e. each agent has a set of terminals and wants to build a network in which his terminals are connected. Possible edges in the network have costs and each agent's goal is to pay as little as possible. Determining whether or not a Nash equilibrium exists in this game is NP-complete. However, when the goal of each player is to connect a terminal to a common source, we prove that there is a Nash equilibrium on the optimal network, and give a polynomial time algorithm to find a $(1+\varepsilon)$-approximate Nash equilibrium on a nearly optimal network. Similarly, for the general connection game we prove that there is a 3-approximate Nash equilibrium on the optimal network, and give an algorithm to find a $(4.65+\varepsilon)$-approximate Nash equilibrium on a network that is close to optimal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.