Abstract
This paper proposes a near-optimal air-to-ground missile guidance law with impact angle and impact velocity constraints based on sequential convex programming. A realistic aerodynamic model is introduced into the problem formulation, such that traditional optimization theory cannot obtain an analytical solution to the optimization problem under state constraints. The original problem is considered as an optimization problem, and the angle of attack is replaced with the angle of attack rate as a new control variable to reconstruct the problem and simplify the solving process. Next, the independent variable is changed in the differential equations to linearize and discretize the problem such that the reconstructed problem can be solved using sequential convex programming. The results obtained by numerical simulations confirmed that the proposed algorithm is valid and faster than the general-purpose nonlinear optimal control problem solver. Finally, it was verified that different impact angles and impact velocities were achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.