Abstract

This paper develops an interpolatory framework for weighted-H2 model reduction of MIMO dynamical systems. A new representation of the weighted-H2 inner products in MIMO settings is introduced and used to derive associated first-order necessary conditions satisfied by optimal weighted-H2 reduced-order models. Equivalence of these new interpolatory conditions with earlier Riccati-based conditions given by Halevi is also shown. An examination of realizations for equivalent weighted-H2 systems leads then to an algorithm that remains tractable for large state-space dimension. Several numerical examples illustrate the effectiveness of this approach and its competitiveness with Frequency Weighted Balanced Truncation and an earlier interpolatory approach, the Weighted Iterative Rational Krylov Algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.