Abstract
We consider the infinite-horizon optimal control of discrete-time, Lipschitz continuous piecewise affine systems with a single input. Stage costs are discounted, bounded, and use a 1 or ∞-norm. Rather than using the usual fixed-horizon approach from model-predictive control, we tailor an adaptive-horizon method called optimistic planning for continuous actions (OPC) to solve the piecewise affine control problem in receding horizon. The main advantage is the ability to solve problems requiring arbitrarily long horizons. Furthermore, we introduce a novel extension that provides guarantees on the closed-loop performance, by reusing data (“learning”) across different steps. This extension is general and works for a large class of nonlinear dynamics. In experiments with piecewise affine systems, OPC improves performance compared to a fixed-horizon approach, while the data-reuse approach yields further improvements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.