Abstract
This paper analyzes the performance of the orthogonal matching pursuit (OMP) algorithm in recovering sparse signals from noisy measurement. Considering the fact that some matrices satisfy some restricted isometry properties (RIPs) but not the coherence condition, a superior RIP-based condition is proposed, which means that if the measurement matrix satisfies √k+1 < 1/(2 + √k) and the minimum component signal-to-noise ratio (MCSNR) is bounded, the OMP algorithm can exactly identify the support of the original sparse signal within k iterations. Finally, the theoretical results are verified by numerical simulations concerning different values of MCSNR and noise levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.