Abstract

We consider the problem of designing incentive-compatible, ex-post individually rational (IR) mechanisms for covering problems in the Bayesian setting, where players' types are drawn from an underlying distribution and may be correlated, and the goal is to minimize the expected total payment made by the mechanism. We formulate a notion of incentive compatibility (IC) that we call support-based IC that is substantially more robust than Bayesian IC, and develop black-box reductions from support-based-IC mechanism design to algorithm design. For single-dimensional settings, this black-box reduction applies even when we only have an LP-relative approximation algorithm for the algorithmic problem. Thus, we obtain near-optimal mechanisms for various covering settings, including single-dimensional covering problems, multi-item procurement auctions, and multidimensional facility location.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.